www.久久久久久久久久久,国产成人精品在线观看,亚洲一区二区视频网站,国产福利视频在线观看,日韩和的一区二在线,97青草超碰久久国内精品91,99精品国产一区二区,女同精品久久
    Home·News Center·Industry Information

    Encyclopedia of common preparation methods of nitrogen

    Release time: 2021-06-23 11:09:38
    Source: Yigas
    Author: Xiaoyue
    Reading volume:
    What are the production methods of nitrogen? The commonly used preparation methods of nitrogen include liquid air fractionation, cryogenic separation, membrane separation, pressure swing adsorption (PSA method), pressure swing adsorption (PSA method), etc. Nitrogen is the 30th most abundant element on earth. Considering that nitrogen occupies 4/5 of the atmosphere, that is, more than 78% of the atmosphere, we can use almost unlimited amounts of nitrogen.
    Liquid air fractionation
    Nitrogen is mainly produced by separation from the atmosphere or decomposition of nitrogen-containing compounds. [1] More than 33 million tons of nitrogen is produced through Air Liquide each year, and then fractionated distillation is used to produce nitrogen and other gases in the atmosphere.
    Cryogenic separation
    Cryogenic separation method is also called cryogenic rectification method, which uses the inconsistent boiling point of nitrogen and oxygen in the air to separate oxygen and nitrogen. Since the boiling point of nitrogen (-196°C) is lower than that of oxygen (-183°C), during the evaporation of liquid air, liquid nitrogen is more likely to become gaseous than liquid oxygen, and during air liquefaction, oxygen is easier to change than nitrogen. Into a liquid state. Since the boiling points of nitrogen and oxygen are not much different, liquid air and gaseous air need to undergo repeated evaporation, condensation, and reevaporation processes (this process is called cryogenic rectification process), and finally it can be in the gas phase fraction at the top of the rectifying tower. High-purity nitrogen is passed. The purity of nitrogen depends on the number of stages of the rectification tower and the rectification efficiency.
    The cryogenic separation process has experienced more than 100 years of development, and has experienced many different process flows such as high pressure, high and low pressure, medium pressure and full low pressure processes. With the development of modern air separation technology and equipment, high-pressure, high-low-pressure, and medium-pressure air separation processes have been basically eliminated, and the all-low-pressure process with lower energy consumption and safer production has become the first choice for large and medium-sized low-temperature air separation plants. The total low pressure air separation process is divided into external compression process and internal compression process according to the different compression links of oxygen and nitrogen products. The total low-pressure external compression process produces low-pressure oxygen or nitrogen, and then the product gas is compressed to the required pressure by an external compressor and supplied to the user. The full low pressure internal compression process vaporizes the liquid oxygen or liquid nitrogen produced by the rectification in the cold box through the liquid pump to the user's required pressure, and then reheats it in the main heat exchanger and supplies it to the user. The main process is raw material air filtration, compression, cooling, purification, pressurization, expansion, rectification, separation, reheating, and external supply.
    Membrane separation
    Membrane separation technology is based on the membrane's selective permeability and diffusion of gas components to achieve the purpose of gas separation and purification. The speed of each component in the gas through the membrane is different, and the speed of each component through the membrane is related to the properties of the gas, the characteristics of the membrane, and the partial pressure difference between the two sides of the membrane. It is impossible for the gas components passing through the membrane to achieve 100% purity. Gas separation membranes can generally be divided into porous materials and non-porous materials. They are inorganic (porous glass, ceramics, metals, electronically conductive solids and palladium alloys, etc.) or organic polymers (microporous polyethylene, porous cellulose acetate, homogeneous Acetate fiber, polysiloxane rubber and polycarbonate).
    The purified compressed air passes through the buffer tank, and enters from one end of the membrane group after the combined filter. The gas molecules first contact the high-pressure side of the membrane under pressure. The mixed gas is dissolved in the membrane with different solubility on the surface of the high-pressure side of the membrane, and then driven by the pressure difference between the two sides of the membrane, the molecules of the mixed gas diffuse to the low-pressure side of the membrane at different speeds. After the selection of the two processes of dissolution and diffusion, the final mixed gas is separated into individual components. For example, the permeation rate of air and oxygen is greater than that of nitrogen. After membrane separation, the gas left on the high-pressure side is rich in nitrogen, and the gas that passes through is rich in oxygen.
    Pressure swing adsorption method (PSA method)
    This method uses compressed air as raw material, generally molecular sieve as adsorbent. Under a certain pressure, the difference in the adsorption amount of oxygen and nitrogen molecules in the air on the surface of different molecular sieves is used to enrich oxygen in the adsorption phase within a certain period of time. It is enriched in the gas phase to realize the separation of oxygen and nitrogen; and after the pressure is relieved, the molecular sieve adsorbent is analyzed and regenerated and recycled. [3] In addition to molecular sieves, activated alumina, silica gel, etc. can also be used as adsorbents.
    At present, the commonly used pressure swing adsorption nitrogen production device uses compressed air as raw material and carbon molecular sieve as adsorbent. It uses the difference in adsorption capacity, adsorption rate, and adsorption capacity of oxygen and nitrogen on carbon molecular sieve, and the effect of molecular sieve on oxygen and nitrogen. Different pressures have the characteristics of different adsorption capacity to realize the separation of oxygen and nitrogen. First, oxygen in the air is preferentially adsorbed by carbon molecular sieve, thereby enriching nitrogen in the gas phase. In order to obtain nitrogen continuously, two adsorption towers need to work alternately.
    主站蜘蛛池模板: 国产一区二区三区四区五区七| 欧美午夜一区二区三区精美视频| 免费精品一区二区三区第35| 久久久久久亚洲精品| 国产在线精品区| 国产一区二区黄| 午夜裸体性播放免费观看| 久久久久久久亚洲视频| 久久国产精彩视频| 国产69精品久久久久app下载| 亚洲麻豆一区| 激情久久久| 久久精品99国产精品亚洲最刺激| 亚洲va国产2019| 国产一二三区免费| 国产伦精品一区二区三区免| 国产视频一区二区在线| 麻豆精品久久久| 国产午夜一级片| 国产精品综合在线| 亚洲自偷精品视频自拍| 欧美乱妇在线视频播放| 97久久国产亚洲精品超碰热| 日韩精品在线一区二区三区| 国产精品一区在线播放| xxxxhd欧美| 欧美午夜精品一区二区三区| 欧美日韩国产91| 欧美日韩精品在线一区| 午夜剧场一级片| 麻豆国产一区二区| 国产一级一区二区| 国产97在线播放| 娇妻被又大又粗又长又硬好爽| 国产精品视频一区二区二| 久久99精品久久久久婷婷暖91| 91麻豆精品国产91久久久久| 亚洲精欧美一区二区精品| 99国产精品久久久久| 在线国产精品一区二区| 色婷婷综合久久久中文一区二区| 欧美一区二区三区另类| 黄色国产一区二区| 国产清纯白嫩初高生视频在线观看| 精品久久久久久久免费看女人毛片| 国产日韩欧美亚洲综合| 亚洲国产偷| 天堂av色婷婷一区二区三区| 右手影院av| 亚洲欧美一卡| 综合久久一区二区三区| 欧美一区二区三区四区夜夜大片| 久久人人97超碰婷婷开心情五月 | 亚洲精品一区中文字幕| 国产91丝袜在线| 国产午夜一级一片免费播放| xxxx18日本护士高清hd| 国产福利一区在线观看| 日韩a一级欧美一级在线播放| 日本xxxx护士高潮hd| 91高清一区| 久久久久国产精品一区二区三区| 精品91av| 久久精品一二三| 国产精品视频1区| 日韩亚洲精品视频| 婷婷午夜影院| 人人澡超碰碰97碰碰碰| 色妞www精品视频| 亚洲国产欧美国产综合一区| 狠狠色噜噜狠狠狠狠69| 91精品国产91热久久久做人人| 狠狠色噜噜狠狠狠狠| 国产在线一区观看| 久久国产麻豆| 日韩精品一区三区| 久久精品99国产精品亚洲最刺激| 亚洲美女在线一区| 久久精品麻豆| xxxxhd欧美| 精品国产免费久久| 国产日产欧美一区二区| 欧美一区二区三区性| 中文字幕日韩有码| 国产精品久久久久久亚洲调教| 亚洲欧美一区二区三区1000| 狠狠色综合久久婷婷色天使 | 欧美hdxxxx| 久久国产精品精品国产| 国产在线播放一区二区| 国产日产欧美一区| 国产美女视频一区二区三区| 亚洲国产欧美一区二区三区丁香婷 | www亚洲精品| 中文字幕一区二区三区又粗| 国产88av| 久久精品com| 亚洲国产精品女主播| 国产一区二区视频免费在线观看| 久久久久国产亚洲日本| 国产一区二区在线免费| 性欧美激情日韩精品七区| 国产片91| 欧美乱大交xxxxx| 欧美一区二区久久| 国产一区二区在线观看免费| 久久久久亚洲| 国内精品99| 久久久久国产一区二区三区不卡| 久久综合伊人77777麻豆最新章节 一区二区久久精品66国产精品 | 国产精品美女久久久免费| 91中文字幕一区| 91麻豆精品一区二区三区 | 欧美日韩一二三四区| 26uuu亚洲国产精品| 欧美在线免费观看一区| 国产偷久久一区精品69| 欧美日韩一二三四区| 国产一区二区三区四区五区七| 日韩av中文字幕一区二区| 欧美一区二粉嫩精品国产一线天| 欧美一区二区三区免费视频| 国产精欧美一区二区三区久久久| 久久影视一区二区| 中文乱幕日产无线码1区| 亚洲免费精品一区二区| 午夜影院一区| 久久久久国产精品嫩草影院| 国产二区免费| 精品国产一区二区三区四区四| 精品国产一区二区三区麻豆免费观看完整版| 午夜社区在线观看| 欧洲在线一区二区| 欧美日韩一级二级三级| 亚洲精品少妇久久久久| 一区二区三区四区中文字幕| 99久久国产综合精品色伊| 国产免费一区二区三区网站免费| 天天干狠狠插| 国产精品尤物麻豆一区二区三区| 午夜影院一级片| _97夜夜澡人人爽人人| 国产精品99一区二区三区| 国产精品国产一区二区三区四区 | 在线观看国产91| 国产色午夜婷婷一区二区三区| 97人人澡人人爽人人模亚洲 | 国产精品网站一区| 日韩一级片免费观看| 性精品18videosex欧美| 九一国产精品| 国产在线精品一区| 高清人人天天夜夜曰狠狠狠狠| 亚洲国产精品一区在线| 日韩电影在线一区二区三区| 午夜亚洲影院| 狠狠搞av| 91片在线观看| 久久九九亚洲| 国产偷自视频区视频一区二区| 亚洲精品国产久| 欧美精品乱码视频一二专区| 一区二区免费在线观看| freexxxx性| 欧美激情精品一区| 97精品国产aⅴ7777| 欧美激情精品久久久久久免费 | 精品三级一区二区| 欧洲精品一区二区三区久久| 国产日韩欧美色图| 99爱国产精品| 欧美日韩久久一区二区| 欧美一区二区三区激情在线视频| 欧美一区二区三区爽大粗免费| 国产欧美一区二区三区在线看| 国产精品一二三四五区| 午夜av男人的天堂| 国产国产精品久久久久| 日韩精品免费一区二区中文字幕| 国产欧美视频一区二区三区| 中文字幕制服狠久久日韩二区| 亚洲精品久久久久中文第一暮| 国产不卡一二三区| 国产欧美久久一区二区三区| 亚洲精品老司机| 亚洲欧美日韩另类精品一区二区三区 | 国产欧美日韩精品一区二区三区| 日本精品在线一区| 国产乱码一区二区三区| 在线电影一区二区| 日韩中文字幕在线一区| 精品福利一区二区| 91精品视频在线免费观看| 国产在线干| 欧美性猛交xxxxxⅹxx88| 夜夜爽av福利精品导航| 在线国产精品一区| 日韩亚洲欧美一区二区| 久久97国产| 亚洲va久久久噜噜噜久久0| 国产综合久久精品| 一区二区午夜| 亚洲精品456| 丰满岳乱妇在线观看中字| 国产大片黄在线观看私人影院| 日韩精品一区二区不卡| 四虎国产永久在线精品| 黄毛片在线观看| 偷拍精品一区二区三区| 免费毛片a| 日本一区中文字幕| 91免费国产视频| 91精品福利观看| 精品国产乱码久久久久久软件影片| 天干天干天啪啪夜爽爽99| 国产视频精品久久| 国产麻豆91视频| 国产二区免费视频| 少妇特黄v一区二区三区图片| 真实的国产乱xxxx在线91| 国产精品久久久区三区天天噜| 国产日韩一区二区在线| 中文无码热在线视频| 精品久久小视频| 毛片免费看看| 国产精品日韩三级| 日本二区在线观看| 在线国产精品一区| 91免费视频国产| 2020国产精品自拍| 精品国产乱码久久久久久老虎| 日韩av免费网站| 色噜噜狠狠色综合中文字幕| 国产高潮国产高潮久久久91| 99爱精品视频| 久久精品国产久精国产| 国产清纯白嫩初高生视频在线观看| 精品久久一区| 国产精品视频一二区| 69久久夜色精品国产69– | 国产午夜精品一区理论片飘花 | 欧美精品九九| 爽妇色啪网| 国产欧美视频一区二区三区| 99精品一区| 亚洲s码欧洲m码在线观看|